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1 Scope of the Chapter

This chapter is concerned with the orthogonalisation of vectors in a finite dimensional space.

2 Background to the Problems

Let a1; a2; . . . ; an be a set of n linearly independent vectors in m-dimensional space; m � n.

We wish to construct a set of n vectors q1; q2; . . . ; qn such that:

– the vectors fqig form an orthonormal set; that is, qTi qj ¼ 0 for i 6¼ j, and kqik2 ¼ 1;

– each ai is linearly dependent on the set fqig.

2.1 Gram–Schmidt Orthogonalisation

The classical Gram–Schmidt orthogonalisation process is described in many textbooks; see for example
Chapter 5 of Golub and van Loan (1996).

It constructs the orthonormal set progressively. Suppose it has computed orthonormal vectors q1; q2; . . . ; qk
which orthogonalise the first k vectors a1; a2; . . . ; ak. It then uses akþ1 to compute qkþ1 as follows:

zkþ1 ¼ akþ1 �
Xk

i¼1

ðqTi akþ1Þqi

qkþ1 ¼ zkþ1

�
kzkþ1k2:

In finite precision computation, this process can result in a set of vectors fqig which are far from being
orthogonal. This is caused by kzkþ1k being small compared with kakþ1k. If this situation is detected, it
can be remedied by reorthogonalising the computed qkþ1 against q1; q2; . . . ; qk, that is, repeating the
process with the computed qkþ1 instead of akþ1. See Danial et al. (1976).

2.2 Householder Orthogonalisation

An alternative approach to orthogonalizing a set of vectors is based on the QR factorization (see the F08
Chapter Introduction), which is usually performed by Householder’s method. See Chapter 5 of Golub and
van Loan (1996).

Let A be the m by n matrix whose columns are the n vectors to be orthogonalised. The QR factorization
gives

A ¼ QR

where R is an n by n upper triangular matrix and Q is an m by n matrix, whose columns are the required
orthonormal set.

Moreover, for any k such that 1 � k � n, the first k columns of Q are an orthonormal basis for the first k
columns of A.

Householder’s method requires twice as much work as the Gram–Schmidt method, provided that no
reorthogonalization is required in the latter. However, it has satisfactory numerical properties and yields
vectors which are close to orthogonality even when the original vectors ai are close to being linearly
dependent.

3 Recommendations on Choice and Use of Available Routines

Note: refer to the Users’ Note for your implementation to check that a routine is available.

The single routine in this chapter, F05AAF, uses the Gram–Schmidt method, with reorthogonalisation to
ensure that the computed vectors are close to being exactly orthogonal. This method is only available for
real vectors.

To apply Householder’s method, you must use routines in Chapter F08:

for real vectors: F08AEF (SGEQRF=DGEQRF), followed by F08AFF (SORGQR=DORGQR)
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for complex vectors: F08ASF (CGEQRF=ZGEQRF), followed by F08ATF (CUNGQR=ZUNGQR)

The example programs for F08AEF (SGEQRF=DGEQRF) or F08ASF (CGEQRF=ZGEQRF) illustrate the
necessary calls to these routines.

4 Routines Withdrawn or Scheduled for Withdrawal

The following routines have been withdrawn. Advice on replacing calls to those withdrawn since Mark 13
is given in the document ‘Advice on Replacement Calls for Withdrawn/Superseded Routines’.

Withdrawn
Routine

Mark of
Withdrawal Replacement Routine(s)

F05ABF 14 F06EJF (SNRM2=DNRM2)
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